---
title: 'Journey for crafting excellence: West Texas A&M University teacher educator standards development and implementation of standards for rural educators'
date: "`r Sys.Date()`"
format:
html:
code-fold: true
code-tools: true
self-contained: false
fontawesome: true
navbar:
right:
- icon: github
href: https://github.com/mshin77/teacher_educator_standards
---
```{=html}
<style>
.responsive-figure {
width: 100% !important;
height: auto;
}
</style>
```
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, warning = FALSE)
```
The website contains outputs and code used to analyze numeric, ordinal, and text data in Garcia et al. (2014). Reproducible materials are also posted at the [ Center for Open Science ](https://doi.org/10.17605/OSF.IO/23PDM) and [ Github ](https://github.com/mshin77/teacher_educator_standards) .
- Garcia, B., Shin, M., Clifton, A., Bingham, T., Coneway, B., & Hughes, C. (2014). Journey for crafting excellence: West Texas A&M University teacher educator standards development and implementation of standards for rural educators. *Texas Forum of Teacher Education, 15,* 20-36. [ https://taote.wildapricot.org/Texas-Forum ](https://taote.wildapricot.org/Texas-Forum)
::: panel-tabset
## Participants
```{r, echo=FALSE}
suppressPackageStartupMessages({
library(readxl)
library(officer)
library(likert)
library(gtsummary)
library(flextable)
library(ggplot2)
library(tidyr)
library(dplyr)
library(reshape2)
library(psych)
library(corrplot)
})
load("data/teacher_education_standards.RData")
```
```{r, echo=FALSE, eval=FALSE}
demo_tbl <- data %>%
dplyr::select(teaching_years, gender, age, program) %>%
tbl_summary(
percent = "column")
demo_tbl_ft <- as_flex_table(demo_tbl)
```
```{r}
demo_tbl_ft
```
## Internal Consistency
#### Calculate Cronbach's alpha
```{r, eval=FALSE}
#| code-fold: false
calculate_alpha <- function(data, prefix) {
category_cols <- grep(paste0("^", prefix), colnames(data), value = TRUE)
alpha_result <- alpha(data[, category_cols])
cat(paste("Cronbach's alpha for", prefix, ":", format(alpha_result$total$raw_alpha, digits = 2, nsmall = 2)), "\n")
return(alpha_result)
}
alpha_standard1 <- calculate_alpha(data, "standard1")
alpha_standard2 <- calculate_alpha(data, "standard2")
alpha_standard3 <- calculate_alpha(data, "standard3")
alpha_standard4 <- calculate_alpha(data, "standard4")
alpha_standard5 <- calculate_alpha(data, "standard5")
alpha_standard6 <- calculate_alpha(data, "standard6")
```
#### standard 1
```{r, echo=FALSE}
summary(alpha_standard1)
```
#### standard 2
```{r, echo=FALSE}
summary(alpha_standard2)
```
#### standard 3
```{r, echo=FALSE}
summary(alpha_standard3)
```
#### standard 4
```{r, echo=FALSE}
summary(alpha_standard4)
```
#### standard 5
```{r, echo=FALSE}
summary(alpha_standard5)
```
#### standard 6
```{r, echo=FALSE}
summary(alpha_standard6)
```
## Semantic Similarity
#### Heatmap of Semantic Similarity Between Teacher Educator Standards
[ Python code ](python.html)
![](heatmap.png)
## Standards
```{r, echo=FALSE, eval=FALSE}
selected_data <- data %>% select(id:program, standard1_1:standard6_5)
init_long_data <- melt(selected_data, id.vars = c('id', 'teaching_years', 'gender', 'age', 'program'), variable.name = 'standard', value.name = 'response')
openxlsx::write.xlsx(init_long_data, "data/init_long_data.xlsx", asTable = TRUE)
init_long_data <- read_excel("data/long_data.xlsx")
long_data <- init_long_data %>% mutate(response = case_when(
response == "1" ~ "Beginning",
response == "2" ~ "Developing",
response == "3" ~ "Implementing",
response == "4" ~ "Maintaining",
response == "5" ~ "Transforming"
))
long_data$response <- factor(long_data$response, levels = c("Beginning", "Developing", "Implementing", "Maintaining", "Transforming"), ordered = TRUE)
long_data$standard <- dplyr::case_when(
long_data$standard == "standard1_1" ~ "Standard 1-1",
long_data$standard == "standard1_2" ~ "Standard 1-2",
long_data$standard == "standard1_3" ~ "Standard 1-3",
long_data$standard == "standard1_4" ~ "Standard 1-4",
long_data$standard == "standard1_5" ~ "Standard 1-5",
long_data$standard == "standard2_1" ~ "Standard 2-1",
long_data$standard == "standard2_2" ~ "Standard 2-2",
long_data$standard == "standard2_3" ~ "Standard 2-3",
long_data$standard == "standard2_4" ~ "Standard 2-4",
long_data$standard == "standard2_5" ~ "Standard 2-5",
long_data$standard == "standard3_1" ~ "Standard 3-1",
long_data$standard == "standard3_2" ~ "Standard 3-2",
long_data$standard == "standard3_3" ~ "Standard 3-3",
long_data$standard == "standard3_4" ~ "Standard 3-4",
long_data$standard == "standard3_5" ~ "Standard 3-5",
long_data$standard == "standard4_1" ~ "Standard 4-1",
long_data$standard == "standard4_2" ~ "Standard 4-2",
long_data$standard == "standard4_3" ~ "Standard 4-3",
long_data$standard == "standard5_1" ~ "Standard 5-1",
long_data$standard == "standard5_2" ~ "Standard 5-2",
long_data$standard == "standard5_3" ~ "Standard 5-3",
long_data$standard == "standard5_4" ~ "Standard 5-4",
long_data$standard == "standard5_5" ~ "Standard 5-5",
long_data$standard == "standard5_6" ~ "Standard 5-6",
long_data$standard == "standard6_1" ~ "Standard 6-1",
long_data$standard == "standard6_2" ~ "Standard 6-2",
long_data$standard == "standard6_3" ~ "Standard 6-3",
long_data$standard == "standard6_4" ~ "Standard 6-4",
long_data$standard == "standard6_5" ~ "Standard 6-5",
TRUE ~ as.character(long_data$standard)
)
S1 <- long_data %>%
filter(grepl("^Standard 1-[1-5]$", standard))
S2 <- long_data %>%
filter(grepl("^Standard 2-[1-5]$", standard))
S3 <- long_data %>%
filter(grepl("^Standard 3-[1-5]$", standard))
S4 <- long_data %>%
filter(grepl("^Standard 4-[1-3]$", standard))
S5 <- long_data %>%
filter(grepl("^Standard 5-[1-6]$", standard))
S6 <- long_data %>%
filter(grepl("^Standard 6-[1-5]$", standard))
```
#### Teacher Education Standard 1
```{r, fig.width=8, fig.height=5, out.extra='class="responsive-figure"'}
create_graph <- function(data) {
color_font <- c("Beginning" = "black", "Developing" = "black", "Implementing" = "black", "Maintaining" = "black", "Transforming" = "white")
summary <- data %>%
group_by(standard, response) %>%
summarise(Count = n(), .groups = 'drop') %>%
group_by(standard) %>%
mutate(Percentage = Count / sum(Count) * 100) %>%
ungroup()
summary <- summary %>%
mutate(color_font = color_font[response])
ggplot(summary, aes(x = standard, y = Percentage, fill = response)) +
geom_bar(stat = "identity", position = "fill") +
scale_y_continuous(labels = scales::percent) +
scale_fill_brewer(palette = "YlGnBu", breaks = c("Beginning", "Developing", "Implementing", "Maintaining", "Transforming")) +
labs(title = "",
x = "Standard",
y = "Percentage",
fill = "Response") +
theme_minimal(base_size = 11) +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(color = "#3B3B3B", linewidth = 0.3),
axis.ticks = element_line(color = "#3B3B3B", linewidth = 0.3),
strip.text.x = element_text(size = 11, color = "#3B3B3B"),
axis.text.x = element_text(size = 11, color = "#3B3B3B"),
axis.text.y = element_text(size = 11, color = "#3B3B3B"),
axis.title = element_text(size = 11, color = "#3B3B3B"),
legend.title = element_text(size = 11),
legend.text = element_text(size = 11)) +
geom_text(aes(label = sprintf("%.1f%%", Percentage), color = color_font),
position = position_fill(vjust = 0.5),
size = 4) +
scale_color_identity()
}
create_graph(S1)
ggsave("results/standard1.png")
```
#### Teacher Education Standard 2
```{r, fig.width=8, fig.height=5, out.extra='class="responsive-figure"'}
create_graph(S2)
ggsave("results/standard2.png")
```
#### Teacher Education Standard 3
```{r, fig.width=8, fig.height=5, out.extra='class="responsive-figure"'}
create_graph(S3)
ggsave("results/standard3.png")
```
#### Teacher Education Standard 4
```{r, fig.width=8, fig.height=5, out.extra='class="responsive-figure"'}
create_graph(S4)
ggsave("results/standard4.png")
```
#### Teacher Education Standard 5
```{r, fig.width=8, fig.height=5, out.extra='class="responsive-figure"'}
create_graph(S5)
ggsave("results/standard5.png")
```
#### Teacher Education Standard 6
```{r, fig.width=8, fig.height=5, out.extra='class="responsive-figure"'}
create_graph(S6)
ggsave("results/standard6.png")
```
:::